

Welcome to ontobio’s documentation!

Library for working with ontologies and ontology associations.

Provides:

	Transparent access to both local files
(obo-json [https://github.com/geneontology/obographs],
GAF [http://ontobio.readthedocs.io/en/latest/inputs.html#local-gaf-or-gpad-association-files])
and remote services (OntoBee, GO/GOlr,
Monarch [http://monarchinitiative.org], Wikidata)

	Powerful graph operations for traversing logical structure of ontologies

	object model for working with ontology metadata elements (synonyms, etc)

	Access to gene product functional annotations in GO

	Access to gene/variant/disease/genotype etc info from Monarch

	Simple basis for building bioinformatics analyses and applications (e.g.
enrichment [http://ontobio.readthedocs.io/en/latest/analyses.html#enrichment])

	Underpinnings for web service APIs

	Rich command line access for non-programmers (see Command Line)

	Examples in Notebooks

Compatibility

ontobio requires Python 3.4+.

Contributing

https://github.com/biolink/ontobio

Installation

You can install ontobio with pip:

$ pip install ontobio

Documentation

Contents:

	Installation
	Development Version

	With pyvenv

	Quick start
	Command Line

	Notebooks

	Python

	Web Services

	Command Line
	Live Demo

	Ontologies

	Associations

	Parsing assoc files

	GOlr Queries

	Notebooks
	Jupyter Notebook Examples

	Running Jupyter Locally

	Basic Concepts
	Ontologies

	Associations

	Identifiers

	Inputs
	Local JSON ontology files

	Local OWL and OBO-Format files

	Local SKOS RDF Files

	Remote SPARQL ontology access

	Remote SciGraph ontology access

	Local GAF or GPAD association files

	Remote association access via GOlr

	Remote association access via wikidata

	Use of caching

	To be implemented

	Outputs and Visualization
	Graphviz Output

	Matplotlib Output

	plotly

	JSON output

	OBO-Format output

	Identifiers
	URIs, prefixes and CURIEs

	Mapping

	Ontology-Based Analyses
	Enrichment

	Identifier Mapping

	Semantic Similarity

	Slimming

	Graph Reduction

	Lexical Analyses

	Advanced Ontology Use

	GO Rules Engine
	Rules Definition

	How to Write a New Rule Implementation

API Reference

If you are looking for information on a specific function, class or
method, this part of the documentation is for you.

	API
	Ontology Access

	Assocation Access

	GOlr Queries

	Lexmap

Additional Notes

	CHANGES
	0.2.19

	0.2.18

	0.2.17

	0.2.16

	0.2.15

	0.2.11

	0.2.10

	0.2.9

	0.2.7

	0.2.6

	0.2.5

	0.2.4

Indices and tables

	Index

	Module Index

	Search

Installation

Ontobio requires Python version 3.4 or higher

Install with pip:

pip install ontobio

Development Version

The development version can be downloaded from GitHub.

git clone https://github.com/biolink/ontobio.git
cd ontobio
pip install -e .[dev,test]

With pyvenv

cd ontobio
pyvenv venv
source venv/bin/activate
export PYTHONPATH=.:$PYTHONPATH
pip install -r requirements.txt

Quick start

This guide assumes you have already installed ontobio. If not, then follow the steps in the
Installation section.

Command Line

You can use a lot of the functionality without coding a line of
python, via the command line wrappers in the bin directory. For
example, to search on ontology for matching labels:

ogr.py -r mp %cerebellum%

See the Command Line section for more details.

Notebooks

We provide Jupyter Notebooks [http://nbviewer.jupyter.org/github/biolink/ontobio/tree/master/notebooks/]
to illustrate the functionality of the python library. These can also
be used interactively.

See the Notebooks section for more details.

Python

This code example shows some of the basics of working with remote
ontologies and associations

from ontobio.ontol_factory import OntologyFactory
from ontobio.assoc_factory import AssociationSetFactory

label IDs for convenience
MOUSE = 'NCBITaxon:10090'
NUCLEUS = 'GO:0005634'
TRANSCRIPTION_FACTOR = 'GO:0003700'
PART_OF = 'BFO:0000050'

Create an ontology object containing all of GO, with relations filtered
ofactory = OntologyFactory()
ont = ofactory.create('go').subontology(relations=['subClassOf', PART_OF])

Create an AssociationSet object with all mouse GO annotations
afactory = AssociationSetFactory()
aset = afactory.create(ontology=ont,
 subject_category='gene',
 object_category='function',
 taxon=MOUSE)

genes = aset.query([TRANSCRIPTION_FACTOR],[NUCLEUS])
print("Mouse TF genes NOT annotated to nucleus: {}".format(len(genes)))
for g in genes:
 print(" Gene: {} {}".format(g,aset.label(g)))

See the notebooks for more examples. For more documentation on
specific components, see the rest of these docs, or skip forward to
the API docs.

Web Services

See the Biolink section

Command Line

A large subset of ontobio functionality is available via a powerful
command line interface that can be used by non-programmers.

You will first need to install, see Installation

After that, set up your PATH:

export PATH $HOME/repos/ontobio/ontobio/bin
ogr -h

For many operations you need to be connected to a network

Note: command line interface may change

Live Demo

You can see the tour on asciinema:

	ontology querying tour [https://asciinema.org/a/136752]

	how remote sparql works [https://asciinema.org/a/136748]

Ontologies

The ogr command handles ontologies

Connecting to ontologies

Specify an ontology with the -r option. this will always be the OBO
name, for example go, cl, mp, etc

	-r go connect to GO via default method (currently OntoBee-SPARQL)

	-r obo:go connect to GO via download and cache of ontology from
OBO Library PURL

	-r /users/my/my-ontologies/go.json use local download of ontology

See Inputs for possible sources to connect to

In the following we assume default method, but the -r argument can be substituted.

Basic queries

Show all classes named neuron:

ogr -r cl neuron

Multiple arguments can be provided, e.g.:

ogr -r cl neuron hepatocyte erythrocyte

Ancestors queries

List all ancestors:

ogr -r cl neuron

Show ancestors as tree, following only subclass:

ogr -r cl -p subClassOf -t tree neuron

generates:

% GO:0005623 ! cell
 % CL:0000003 ! native cell
 % CL:0000255 ! eukaryotic cell
 % CL:0000548 ! animal cell
 % CL:0002319 ! neural cell
 % CL:0000540 ! neuron *
 % CL:0002371 ! somatic cell
 % CL:0002319 ! neural cell
 % CL:0000540 ! neuron *

Descendants of neuron, parts and subtypes

ogr -r cl -p subClassOf -p BFO:0000050 -t tree -d d neuron

Descendants and ancestors of neuron, parts and subtypes

ogr -r cl -p subClassOf -p BFO:0000050 -t tree -d du neuron

All ancestors of all classes 2 levels down from subclass-roots within
CL:

ogr -r cl -P CL -p subClassOf -t tree -d u -L 2

Visualization using obographviz

Requires: https://www.npmjs.com/package/obographviz

Add og2dot.js to path

ogr -p subClassOf BFO:0000050 -r go -t png a nucleus

This proceeds by:

	Using the python ontobio library to extract a networkx subgraph
around the specified node

	Write as obographs-json

	Calls og2dot.js

Output:

[image: img]

img

Search

List exact matches to neuron

ogr -r cl neuron

Terms starting with neuron, SQL style

ogr -r cl neuron%

Terms starting with neuron, regex (equivalent to above)

ogr -r cl -s r ^neuron

Terms ending with neuron

ogr -r cl -s r neuron$

Terms containing the string neuron

ogr -r cl -s r neuron

Note: any of the above can be fed into other renderers, e.g. trees,
graphs

E.g. terms containing neuron

ogr -r cl %neuron%

E.g. terms ending neuron, to tree

ogr -r cl %neuron -t tree

Properties

Properties (relations) are treated as nodes in the graph, e.g.

ogr-tree -d ud -r ro 'develops from'

 . RO:0002324 ! developmentally related to
 % RO:0002258 ! developmentally preceded by
 % RO:0002202 ! develops from *
 % RO:0002225 ! develops from part of
 % RO:0002494 ! transformation of
 % RO:0002495 ! immediate transformation of
 % RO:0002207 ! directly develops from
 % RO:0002495 ! immediate transformation of

SPARQL integration

SPARQL where clauses can be inserted using -Q to pipe the results
of a query to generate the initial set of IDs, e.g.:

ogr-tree -r pato -Q "{?x rdfs:subClassOf+ PATO:0000052}"

Associations

The ontobio-assoc command handles ontologies

Subcommands:

subontology Extract sub-ontology
enrichment Perform an enrichment test
phenolog Perform multiple enrichment tests
query Query based on positive and negative terms
associations Query for association pairs
intersections Query intersections
dendrogram Plot dendrogram from intersections
simmatrix Plot dendrogram for similarities between subjects

Examples

Enrichment analysis, using all genes associated to a GO term as sample
(we expect this GO term to be top results)

ontobio-assoc -v -r go -T NCBITaxon:9606 -C gene function enrichment -q GO:1903010

Plotly:

ontobio-assoc -v -r go -T NCBITaxon:10090 -C gene function dendrogram GO:0003700 GO:0005215 GO:0005634 GO:0005737 GO:0005739 GO:0005694 GO:0005730 GO:0000228 GO:0000262

Show similarity matrix for a set of genes:

ontobio-assoc -v -r go -T NCBITaxon:10090 -C gene function simmatrix MGI:1890081 MGI:97487 MGI:106593 MGI:97250 MGI:2151057 MGI:1347473

Basic queries, using file as input:

ontobio-assoc -C gene function -T pombe -r go -f tests/resources/truncated-pombase.gaf query -q GO:0005622

Parsing assoc files

The ontobio-parse-assocs.py command will parse, validate and
convert association files (GAF, GPAD, HPOA etc) of all file types and versions.

Top Level Options

ontobio-parse-assocs.py mostly uses top level options before subcommands to configure parsing.

	-r, --resource is the ontology file, in OBO JSON format

	-f, --file input annotation file

	-F, --format is the format of the input file. GAF will be the default if not provided

	--report-md and --report-json are the paths to output the parsing and validation reports to

Use validate to produce a report validating the input file, -f, --file.

Use convert to convert the input annotation file into a GPAD or GAF of any version. A report will still be produced.
* -t, --to is the format to convert to. GAF, GPAD are accepted.
* -n, --format-version is the version. For GAF, 2.1 or 2.2 are accepted with 1.2 as default. For GPAD 1.2 or 2.0 are accepted with 1.2 default.

GO Rules

ontobio-parse-assocs.py is capable of running the GO Rules (https://github.com/geneontology/go-site/tree/master/metadata/rules) over each annotation as they are parsed. By default, in this script, annotations are not validated by GO Rules except gorule-0000020, gorule-0000027, and gorule-0000059.

To include a rule in the rule set use the option -l or --rule followed by an integer representing the rule ID.

For example to include gorule-0000006:

ontobio-parse-assocs.py -f my_assoc.gaf --report-md report.md -l 6 validate

Use multiple -l <ID> to build up a list of rules that will be used to validate the input file:

ontobio-parse-assocs.py -f my_assoc.gaf --report-md report.md -l 6 -l 13 validate

To turn on all rules at once, use -l all:

ontobio-parse-assocs.py -f my_assoc.gaf --report-md report.md -l all validate

Under the hood, this is all controlled using a parameter, rule_set attached to the AssocParserConfig class. This accepts a list of integers or the string "all" or None. Setting to None (the default) will include no rules, and using "all" will use all rules.

The parameter passed in is used to create the assocparser.RuleSet dataclass.

GOlr Queries

The qbiogolr.py command is for querying a GOlr instance

Notebooks

Jupyter Notebook Examples

We use Jupyter Notebooks [http://jupyter.org/]

Browse the examples: Ontobio Jupyter Notebooks [http://nbviewer.jupyter.org/github/biolink/ontobio/tree/master/notebooks/]

Running Jupyter Locally

Follow the instructions for installing from GitHub in
Installation. Then start a notebook browser with:

PYTHONPATH=.. jupyter notebook

Basic Concepts

Ontologies

We leverage networkx

	obographs [http://https://github.com/geneontology/obographs]

	motivation [http://douroucouli.wordpress.com/2016/10/04/a-developer-friendly-json-exchange-format-for-ontologies/]

Class: Ontology

from ontobio.ontol_factory import OntologyFactory
ont = OntologyFactory().create("go")
[nucleus] = ont.search('nucleus')
ancestors = ont.ancestors(nucleus)

Alternatives

Ontobio is aimed primarily at bioinformatics applications, which
typically have lightweight ontology requirements: navigation and
grouping via graph structures, access to basic metadata such as
synonyms.

Associations

The association model is a generalization of the GO
association/annotation model. The typical scenario is to link a
biological entity (gene, gene product, protein complex, variant or
allele, disease, individual organism) to a descriptive ontology class,
via a defined relationship type, plus metadata such as provenance and
evidence. Note that it can be generalized further also link two
entities (e.g. gene-gene, such as homology or relationship) or two
ontology classes. In fact the distinction between entities and
ontology nodes is one of convenience.

Categories

TODO

Lightweight vs Complete

For many purposes, it is only necessary to use a very lightweight
representation of associations, as a collection of pairwise mappings
between subjects and objects. This can be found in the class AssociationSet. An association set can be constructed using a
particular set of criteria - e.g. all GO annotations to all zebrafish
genes.

For other purposes it is necessary to have a full-blown
representation, in which each association is modeled complete with
evidence, provenance and so on. TODO Link to documentation.

Example Asssociation Set

This example shows a simple set of pairwise associations:

from ontobio.assoc_factory import AssociationSetFactory
afactory = AssociationSetFactory()
aset = afactory.create(ontology=ont,
 subject_category='gene',
 object_category='function',
 taxon='NCBITaxon:7955') ## Zebrafish

Assocations vs ontology edges

The distinction between an association (aka annotation) and an
ontology edge is primarily one of convenience. For example, it is
possible to combine diseases, phenotypes and the associations between
them in one graph, with relationship type has-phenotype connecting
these. Similary, gene could be added to a GO molecular function graph, connecting via
capable-of.

By stratifying the two sets of entities and using a different data
structure to connect these, we make it easier to define and perform
certain operations, e.g. enrichment, semantic similarity, machine
learning, etc.

But we also
provide means of interconverting between these two perspectives
(TODO).

See also

	GPAD [https://github.com/geneontology/go-annotation/tree/master/specs]

	OBAN [https://github.com/EBISPOT/OBAN]

Class: AssociationSet

Identifiers

Ontobio uses CURIEs to identify entities, e.g. OMIM:123,
GO:0001850. See Identifiers for more information

Inputs

Ontobio is designed to work with either local files or with remote
information accessed via Services.

Access is generally mediated using a factory object. The client
requests an ontology via a handle to the factory, and the factory
will return with the relevant implementation instantiated.

Local JSON ontology files

You can load an ontology from disk (or a URL) that conforms to the
obographs [http://https://github.com/geneontology/obographs] JSON standard.

Command line example:

ogr.py -r path/to/my/file.json

Code example, using an OntologyFactory

from ontobio.ontol_factory import OntologyFactory
ont = OntologyFactory().create("/path/to/my/file.json")

Local OWL and OBO-Format files

Requirement: OWLTools

Command line example:

ogr.py -r path/to/my/file.owl

Code example, using an OntologyFactory

from ontobio.ontol_factory import OntologyFactory
ont = OntologyFactory().create("/path/to/my/file.owl")

Local SKOS RDF Files

SKOS is an RDF data model for representing thesauri and terminologies.

See the SKOS primer [https://www.w3.org/TR/skos-primer/] for more details.

Command line example:

ogr.py -r path/to/my/skosfile.ttl

Code example, using an OntologyFactory

from ontobio.ontol_factory import OntologyFactory
ont = OntologyFactory().create("skos:/path/to/my/skosfile.ttl")

Remote SPARQL ontology access

The default SPARQL service used is the OntoBee one, which provides
access to all OBO library ontologies

Warning

May change in future

Command line example:

ogr.py -r cl

Note that the official OBO library prefix must be used, e.g. cl,
go, hp. See http://obofoundry.org/

Code example, using an OntologyFactory

from ontobio.ontol_factory import OntologyFactory
ont = OntologyFactory().create("cl")

Remote SciGraph ontology access

Warning

Experimental

Command line example:

ogr.py -r scigraph:ontology

Code example, using an OntologyFactory

from ontobio.ontol_factory import OntologyFactory
ont = OntologyFactory().create("scigraph:ontology")

Warning

Since SciGraph contains multiple graphs interwoven together, care
must be taken on queries that don’t use relationship types, as
ancestor/descendant lists may be large

Local GAF or GPAD association files

The ontobio.AssociationSet class provides a lightweight way
of storing sets of associations.

Code example: parse all associations from a GAF, and filter according
to provider:

p = GafParser()
assocs = p.parse(open(POMBASE,"r"))
pombase_assocs = [a for a in assocs if a['provided_by'] == 'UniProt']

Code example, creating AssociationSet objects, using an AssociationSetFactory

afactory = AssociationSetFactory()
aset = afactory.create_from_file(file=args.assocfile,ontology=ont)

Remote association access via GOlr

GOlr is the name given to the Solr instance used by the Gene Ontology
and Planteome projects. This has been generalized for use with the
Monarch Initiative project.

GOlr provides fast access and faceted search on top of Associations
(see the Basic Concepts section for more on the concept of
associations). Ontobio provides both a transparent facade over GOlr,
and also direct access to advanced queries.

By default an eager loading strategy is used: given a set of query
criteria (minimally, subject and object categories plus a taxon, but
optionally including evidence etc), all asserted pairwise associations
are loaded into an association set. E.g.

aset = afactory.create(ontology=ont,
 subject_category='gene',
 object_category='function',
 taxon=MOUSE)

Additionally, this is cached so future calls will not invoke the
service overhead.

For performing advanced analytic queries over the complete GOlr
database, see the GolrAssociationQuery class. TODO
provide examples.

Remote association access via wikidata

TODO

Use of caching

When using remote services to access ontology or association set
objects, caching is automatically used to avoid repeated
access. Currently an eager strategy is used, in which large blocks
are fetched in advance, though in future lazy strategies are
optionally employed.

To be implemented

	Remote access to SciGraph/Neo4J

	Remote access to Chado databases

	Remote access to Knowledge Beacons

Outputs and Visualization

See the GraphRenderer module

Graphviz Output

Dependency: obographviz

Matplotlib Output

TODO

plotly

TODO

JSON output

TODO

OBO-Format output

Identifiers

URIs, prefixes and CURIEs

Mapping

Ontology-Based Analyses

Warning

In the future the analysis methods may migrate from the AssociationSet
class to dedicated analysis engine classes.

Enrichment

See the Notebook example [http://nbviewer.jupyter.org/github/biolink/ontobio/blob/master/notebooks/Phenotype_Enrichment.ipynb]

OntoBio allows for generalized gene set enrichment: given a set of
annotations that map genes to descriptor terms, and an input set of
genes, and a background set, find what terms are enriched in the input
set compared to the background.

With OntoBio, enrichment tests work for any annotation corpus, not
necessarily just gene-oriented. For example,
disease-phenotype. However, care must be taken with underlying
assumptions with non-gene sets.

The very first thing you need to do before an enrichment analysis is
fetch both an Ontology object and an AsssociationSet object. This
could be a mix of local files or remote service/database. See
Inputs for details.

Assume that we are using a remote ontology and local GAF:

from ontobio import OntologyFactory
from ontobio import AssociationSetFactory
ofactory = OntologyFactory()
afactory = AssociationSetFactory()
ont = ofactory.create('go')
aset = afactory.create_from_gaf('my.gaf', ontology=ont)

Assume also that we have a set of sample and background gene IDs, the
test is:

enr = aset.enrichment_test(subjects=gene_ids, background=background_gene_ids, threshold=0.00005, labels=True)

This returns a list of dicts (TODO - decide if we want to make
this an object and follow a standard class model)

NOTE the input gene IDs must be the same ones used in the
AssociationSet. If you load from a GAF, this is the IDs that are
formed by combining col1 and col2, separated by a
“:”. E.g. UniProtKB:P123456

What if you have different IDs? Or what if you just have a list of
gene symbols? In this case you will need to map these names or IDs,
the subject of the next section.

Reproducibility

For reproducible analyses, use a versioned PURL for the ontology

Command line wrapper

You can use the ontobio-assoc command to run enrichment
analyses. Some examples:

Create a gene set for all genes in “regulation of bone development”
(GO:1903010). Find other terms for which this is enriched (in human)

find all mouse genes that have 'abnormal synaptic transmission' phenotype
(using remote sparql service for MP, and default (Monarch) for associations
ontobio-assoc.py -v -r mp -T NCBITaxon:10090 -C gene phenotype query -q MP:0003635 > genes.txt

get IDs
cut -f1 -d ' ' genes.txt > genes.ids

enrichment, using GO
ontobio-assoc.py -r go -T NCBITaxon:10090 -C gene function enrichment -s genes.ids

resulting GO terms are not very surprising...
2.48e-12 GO:0045202 synapse
2.87e-11 GO:0044456 synapse part
3.66e-08 GO:0007270 neuron-neuron synaptic transmission
3.95e-08 GO:0098793 presynapse
1.65e-07 GO:0099537 trans-synaptic signaling
1.65e-07 GO:0007268 chemical synaptic transmission

Further reading

For API docs, see enrichment_test in AssociationSet model [http://ontobio.readthedocs.io/en/latest/api.html#assocation-object-model]

Identifier Mapping

TODO

Semantic Similarity

TODO

To follow progress, see this PR [https://github.com/biolink/ontobio/pull/49]

Slimming

TODO

Graph Reduction

TODO

Lexical Analyses

See the lexmap API docs [http://ontobio.readthedocs.io/en/latest/api.html#lexmap]

You can also use the command line:

ontobio-lexmap.py ont1.json ont2.json > mappings.tsv

The inputs can be any kind of handle - a local ontology file or a
remote ontology accessed via services.

For example, this will work:

ontobio-lexmap.py mp hp wbphenotype > mappings.tsv

See Inputs for more details.

For examples of lexical mapping pipelines, see:

	https://github.com/cmungall/sweet-obo-alignment

	`<https://github.com/monarch-initiative/monarch-disease-ontology/tree/master/src/icd10>_

These have examples of customizing configuration using a yaml file.

Advanced Ontology Use

TODO

GO Rules Engine

GO Rules are data quality validation checks for Gene Ontology annotation data. All GO Rules are defined here [https://github.com/geneontology/go-site/tree/master/metadata/rules] and represent what valid Annotation Data should look like.

In Ontobio, when we parse GPAD or GAF annotations using ontobio.io.gafparser.GafParser or ontobio.io.gpadparser.GpadParser we can validate each annotation line on each rule defined in ontobio.io.qc.

Any line that fails a rule will have a message made in ontobio.io.assocparser.Report.

The GO Rules engine is defined in ontobio.io.qc and is where new rules should be implemented.

Rules Definition

A GO Rule implementation works by implementing a function that encodes the logic of the defined GO Rule defined in a rule markdown in the rule definitions [https://github.com/geneontology/go-site/tree/master/metadata/rules]

In code, a Rule consists of an ID, title, fail_mode, and optionally rule tags.

	The ID is the Curie style rule ID, like GORULE:0000013 (referring to GORULE:0000013 [https://github.com/geneontology/go-site/blob/master/metadata/rules/gorule-0000013.md])

	The title should be more or less direct from the rule definition in go-site. For example in GORULE:0000006 [https://github.com/geneontology/go-site/blob/master/metadata/rules/gorule-0000006.md] the title is “IEP and HEP usage is restricted to terms from the Biological Process ontology” and that should be used here.

	fail_mode comes from the rule’s SOP.md [https://github.com/geneontology/go-site/blob/master/metadata/rules/SOP.md]. Annotations that fail a GO Rule that have a HARD fail_mode will be filtered and SOFT will be kept, but with a warning message.

	Tags should be copied over from the rule definition as well. For example GORULE:0000058 [https://github.com/geneontology/go-site/blob/master/metadata/rules/gorule-0000058.md] has a tag “context-import”. This is used to signal extra information about rules and how they should be run. In the GoRule definition, there is a _is_run_from_context which detects if a rule should be run given the context in the ontobio.io.assocparser.AssocParserConfig rule_contexts.

A rule class will provide its own definition of test() which should perform the logic of the rule, returning a TestResult. In the majority of cases, the helper method _result(passes: bool) should be used which will perform some default behavior given True for passing and False for failing the given rule.

How to Write a New Rule Implementation

	Create a new class subclassing GoRule, typically named after the rule ID number.

class GoRule02(GoRule):

 def __init__(self):
 pass

	Write an __init__ calling the super GoRule init, defining the relavent values for your new rule.

class GoRule02
 def __init__(self):
 super().__init__("GORULE:0000002", "No 'NOT' annotations to 'protein binding ; GO:0005515'", FailMode.SOFT)
 # Note title in second argument copied from gorule-0000002 definition

	Override test() implementing the logic of your rule. The annotation is the incoming annotation as a GoAssociation, the config holds important metadata about the current running instance and has resources like the ontology. Note that all identifiers that can be are proper CURIEs, defined by the ontobio.model.association.Curie, so must be wrapped in str to compare against a string.

def test(self, annotation: association.GoAssociation, config: assocparser.AssocParserConfig, group=None) -> TestResult:
 """
 Fake rule that passes only annotations to the GO Term GO:0003674 molecular function
 """
 return self._result(str(annotation.object.id) == "GO:0003674")

	Add new Rule Instance to the GoRules enum. This is how you register a rule with the runner system, so it gets run automatically by ontobio.

	Write Tests for your rule in tests/test_qc.py

Implmentation Notes

Rules can generally use the self._result(bool) helper function instead of producing a TestResult manually. True for Passing, False for Failing. This method will take care of the fail mode, messages, etc, automatically.

For slightly more control, use the result(bool, FailMode) function to create the correct ResultType.

Rules that perform repairs on incoming GoAssociations can be done by instead subclassing RepairRule.

In general, when testing an annotation, the GoAssociation instance is passed along to each rule implementation. In a RepairRule the result will contain the updated annotation. So the runner will grab this updated annotation, passing it along to the next rule down the line. In this way annotations under test may accumulate repairs across the length of the rules.

As a matter of policy, if a rule requires a resource, the test implmentation should test that the AssocParserConfig has that resource defined, and automatically pass the rule if it is not preseent. In the future, we could instead have a “skip” state that encapsulates this.

Also, each rule implementation should complete as fast as possible, and not delay. Any long computation should be cached - so at least only the first run of a rule will be slow. See rules where we compute sublcass closures, like ontobio.io.qc.GoRule07.

API

Ontology Access

Factory

The OntologyFactory class provides a means of creating an ontology
object backed by either local files or remote services. See
Inputs for more details.

	
class ontobio.ontol_factory.OntologyFactory(handle=None)

	Implements a factory for generating Ontology objects.

You should use a factory object rather than initializing
Ontology directly. See Inputs for more details.

initializes based on an ontology name

	Parameters

	handle (str) – see create

	
create(handle=None, handle_type=None, **args)

	Creates an ontology based on a handle

Handle is one of the following

	FILENAME.json : creates an ontology from an obographs json file

	obo:ONTID : E.g. obo:pato - creates an ontology from obolibrary PURL (requires owltools)

	ONTID : E.g. ‘pato’ - creates an ontology from a remote SPARQL query

	Parameters

	handle (str) – specifies how to retrieve the ontology info

Ontology Object Model

	
class ontobio.ontol.Ontology(handle=None, id=None, graph=None, xref_graph=None, meta=None, payload=None, graphdoc=None)

	An object that represents a basic graph-oriented view over an ontology.

The ontology may be represented in memory, or it may be located
remotely. See subclasses for details.

The default implementation is an in-memory wrapper onto the python networkx library

initializes based on an ontology name.

Note: do not call this directly, use OntologyFactory instead

	
add_node(id, label=None, type='CLASS', meta=None)

	Add a new node to the ontology

	
add_parent(id, pid, relation='subClassOf')

	Add a new edge to the ontology

	
add_synonym(syn)

	Adds a synonym for a node

	
add_text_definition(textdef)

	Add a new text definition to the ontology

	
add_to_subset(id, s)

	Adds a node to a subset

	
add_xref(id, xref)

	Adds an xref to the xref graph

	
all_obsoletes()

	Returns all obsolete nodes

	
all_synonyms(include_label=False)

	Retrieves all synonyms

	Parameters

	include_label (bool) – If True, include label/names as Synonym objects

	Returns

	Synonym objects

	Return type

	list[Synonym]

	
ancestors(node, relations=None, reflexive=False)

	Return all ancestors of specified node.

The default implementation is to use networkx, but some
implementations of the Ontology class may use a database or
service backed implementation, for large graphs.

	Parameters

	
	node (str) – identifier for node in ontology

	reflexive (bool) – if true, return query node in graph

	relations (list) – relation (object property) IDs used to filter

	Returns

	ancestor node IDs

	Return type

	list[str]

	
child_parent_relations(subj, obj, graph=None)

	Get all relationship type ids between a subject and a parent.

Typically only one relation ID returned, but in some cases there may be more than one

	Parameters

	
	subj (string) – Child (subject) id

	obj (string) – Parent (object) id

	Returns

	

	Return type

	list

	
children(node, relations=None)

	Return all direct children of specified node.

Wraps networkx by default.

	Parameters

	
	node (string) – identifier for node in ontology

	relations (list of strings) – list of relation (object property) IDs used to filter

	
create_slim_mapping(subset=None, subset_nodes=None, relations=None, disable_checks=False)

	Create a dictionary that maps between all nodes in an ontology to a subset

	Parameters

	
	ont (Ontology) – Complete ontology to be mapped. Assumed pre-filtered for relationship types

	subset (str) – Name of subset to map to, e.g. goslim_generic

	nodes (list) – If no named subset provided, subset is passed in as list of node ids

	relations (list) – List of relations to filter on

	disable_checks (bool) – Unless this is set, this will prevent a mapping being generated with non-standard relations.
The motivation here is that the ontology graph may include relations that it is inappropriate to
propagate gene products over, e.g. transports, has-part

	Returns

	maps all nodes in ont to one or more non-redundant nodes in subset

	Return type

	dict

	Raises

	ValueError – if the subset is empty

	
descendants(node, relations=None, reflexive=False)

	Returns all descendants of specified node.

The default implementation is to use networkx, but some
implementations of the Ontology class may use a database or
service backed implementation, for large graphs.

	Parameters

	
	node (str) – identifier for node in ontology

	reflexive (bool) – if true, return query node in graph

	relations (list) – relation (object property) IDs used to filter

	Returns

	descendant node IDs

	Return type

	list[str]

	
equiv_graph()

	
	Returns

	bidirectional networkx graph of all equivalency relations

	Return type

	graph

	
extract_subset(subset, contract=True)

	Return all nodes in a subset.

We assume the oboInOwl encoding of subsets, and subset IDs are IRIs, or IR fragments

	
filter_redundant(ids)

	Return all non-redundant ids from a list

	
get_filtered_graph(relations=None, prefix=None)

	Returns a networkx graph for the whole ontology, for a subset of relations

Only implemented for eager methods.

Implementation notes: currently this is not cached

	Parameters

	
	relations (-) – list of object property IDs, e.g. subClassOf, BFO:0000050. If empty, uses all.

	prefix (-) – if specified, create a subgraph using only classes with this prefix, e.g. ENVO, PATO, GO

	Returns

	A networkx MultiDiGraph object representing the filtered ontology

	Return type

	nx.MultiDiGraph

	
get_graph()

	Return a networkx graph for the whole ontology.

Note: Only implemented for eager implementations

	Returns

	A networkx MultiDiGraph object representing the complete ontology

	Return type

	nx.MultiDiGraph

	
get_level(level, relations=None, **args)

	Get all nodes at a particular level

	Parameters

	relations (list[str]) – list of relations used to filter

	
get_property_chain_axioms(nid)

	Retrieves property chain axioms for a class id

	Parameters

	nid (str) – Node identifier for relation to be queried

	Returns

	

	Return type

	PropertyChainAxiom

	
get_roots(relations=None, prefix=None)

	Get all nodes that lack parents

	Parameters

	
	relations (list[str]) – list of relations used to filter

	prefix (str) – E.g. GO. Exclude nodes that lack this prefix when testing parentage

	
has_node(id)

	True if id identifies a node in the ontology graph

	
inline_xref_graph()

	Copy contents of xref_graph to inlined meta object for each node

	
is_obsolete(nid)

	True if node is obsolete

	Parameters

	nid (str) – Node identifier for entity to be queried

	
label(nid, id_if_null=False)

	Fetches label for a node

	Parameters

	
	nid (str) – Node identifier for entity to be queried

	id_if_null (bool) – If True and node has no label return id as label

	Returns

	

	Return type

	str

	
logical_definitions(nid)

	Retrieves logical definitions for a class id

	Parameters

	nid (str) – Node identifier for entity to be queried

	Returns

	

	Return type

	LogicalDefinition

	
merge(ontologies)

	Merges specified ontology into current ontology

	
node(id)

	Return a node with a given ID. If the node with the ID exists the
Node object is returned, otherwise None is returned.

Wraps networkx by default

	
node_type(id)

	If stated, either CLASS, PROPERTY or INDIVIDUAL

	
nodes()

	Return all nodes in ontology

Wraps networkx by default

	
parent_index(relations=None)

	Returns a mapping of nodes to all direct parents

	Parameters

	
	relations (list[str]) – list of relations used to filter

	Returns –

	list – list of lists [[CLASS_1, PARENT_1,1, …, PARENT_1,N], [CLASS_2, PARENT_2,1, PARENT_2,2, …] …]

	
parents(node, relations=None)

	Return all direct ‘parents’ of specified node.

Note that in the context of ontobio, ‘parent’ means any node that
is traversed in a single hop along an edge from a subject to object.
For example, if the ontology has an edge “finger part-of some hand”, then
“hand” is the parent of finger.
This can sometimes be counter-intutitive, for example, if the ontology
contains has-part axioms. If the ontology has an edge
“X receptor activity has-part some X binding”, then “X binding” is the ‘parent’
of “X receptor activity” over a has-part edge.

Wraps networkx by default.

	Parameters

	
	node (string) – identifier for node in ontology

	relations (list of strings) – list of relation (object property) IDs used to filter

	
prefix(nid)

	Return prefix for a node

	
prefix_fragment(nid)

	Return prefix and fragment/localid for a node

	
prefixes()

	list all prefixes used

	
relations_used()

	Return list of all relations used to connect edges

	
replaced_by(nid, strict=True)

	Returns value of ‘replaced by’ (IAO_0100001) property for obsolete nodes

	Parameters

	
	nid (str) – Node identifier for entity to be queried

	strict (bool) – If true, raise error if cardinality>1. If false, return list if cardinality>1

	Returns

	

	Return type

	None if no value set, otherwise returns node id (or list if multiple values, see strict setting)

	
resolve_names(names, synonyms=False, **args)

	returns a list of identifiers based on an input list of labels and identifiers.

	Parameters

	
	names (list) – search terms. ‘%’ treated as wildcard

	synonyms (bool) – if true, search on synonyms in addition to labels

	is_regex (bool) – if true, treats each name as a regular expression

	is_partial_match (bool) – if true, treats each name as a regular expression .*name.*

	
search(searchterm, **args)

	Simple search. Returns list of IDs.

	Parameters

	
	searchterm (list) – search term. ‘%’ treated as wildcard

	synonyms (bool) – if true, search on synonyms in addition to labels

	is_regex (bool) – if true, treats each name as a regular expression

	is_partial_match (bool) – if true, treats each name as a regular expression .*name.*

	Returns

	match node IDs

	Return type

	list

	
sorted_nodes()

	Returns all nodes in ontology, after topological sort

	
subgraph(nodes=None)

	Return an induced subgraph

By default this wraps networkx subgraph,
but this may be overridden in specific implementations

	
subontology(nodes=None, minimal=False, relations=None)

	Return a new ontology that is an extract of this one

	Parameters

	
	nodes (-) – list of node IDs to include in subontology. If None, all are used

	relations (-) – list of relation IDs to include in subontology. If None, all are used

	
subsets(nid, contract=True)

	Retrieves subset ids for a class or ontology object

	
synonyms(nid, include_label=False)

	Retrieves synonym objects for a class

	Parameters

	
	nid (str) – Node identifier for entity to be queried

	include_label (bool) – If True, include label/names as Synonym objects

	Returns

	Synonym objects

	Return type

	list[Synonym]

	
text_definition(nid)

	Retrieves logical definitions for a class or relation id

	Parameters

	nid (str) – Node identifier for entity to be queried

	Returns

	

	Return type

	TextDefinition

	
traverse_nodes(qids, up=True, down=False, **args)

	Traverse (optionally) up and (optionally) down from an input set of nodes

	Parameters

	
	qids (list[str]) – list of seed node IDs to start from

	up (bool) – if True, include ancestors

	down (bool) – if True, include descendants

	relations (list[str]) – list of relations used to filter

	Returns

	nodes reachable from qids

	Return type

	list[str]

	
xrefs(nid, bidirectional=False, prefix=None)

	Fetches xrefs for a node

	Parameters

	
	nid (str) – Node identifier for entity to be queried

	bidirection (bool) – If True, include nodes xreffed to nid

	Returns

	

	Return type

	list[str]

	
class ontobio.ontol.Synonym(class_id, val=None, pred='hasRelatedSynonym', lextype=None, xrefs=None, ontology=None, confidence=1.0, synonymType=None)

	Represents a synonym using the OBO model

	Parameters

	
	class_id (-) – the class that is being defined

	val (-) – the synonym itself

	pred (-) – oboInOwl predicate used to model scope. One of: has{Exact,Narrow,Related,Broad}Synonym - may also be ‘label’

	lextype (-) – From an open ended set of types

	xrefs (-) – Provenance or cross-references to same usage

	
as_dict()

	Returns Synonym as obograph dict

	
class ontobio.ontol.LogicalDefinition(class_id, genus_ids, restrictions)

	A simple OWL logical definition conforming to the pattern:

class_id = (genus_id_1 AND ... genus_id_n) AND (P_1 some FILLER_1) AND ... (P_m some FILLER_m)

See obographs [https://github.com/geneontology/obographs] docs for more details

	Parameters

	
	class_id (string) – the class that is being defined

	genus_ids (list) – a list of named classes (typically length 1)

	restrictions (list) – a list of (PROPERTY_ID, FILLER_CLASS_ID) tuples

Assocation Access

Factory

	
class ontobio.assoc_factory.AssociationSetFactory

	Factory for creating AssociationSets

Currently support for golr (GO and Monarch) is provided but other stores possible

initializes based on an ontology name

	
create(ontology=None, subject_category=None, object_category=None, evidence=None, taxon=None, relation=None, file=None, fmt=None, skim=True)

	creates an AssociationSet

Currently, this uses an eager binding to a ontobio.golr instance. All compact associations for the particular combination
of parameters are fetched.

	Parameters

	
	ontology (an Ontology object) –

	subject_category (string representing category of subjects (e.g. gene, disease, variant)) –

	object_category (string representing category of objects (e.g. function, phenotype, disease)) –

	taxon (string holding NCBITaxon:nnnn ID) –

	
create_from_assocs(assocs, **args)

	Creates from a list of association objects

	
create_from_file(file=None, fmt='gaf', skim=True, **args)

	Creates from a file. If fmt is set to None then the file suffixes will
be used to choose a parser.

	Parameters

	
	file (str or file) – input file or filename

	fmt (str) – name of format e.g. gaf

	
create_from_gaf(file, **args)

	Creates from a GAF file

	
create_from_phenopacket(file)

	Creates from a phenopacket file

	
create_from_remote_file(group, snapshot=True, **args)

	Creates from remote GAF

	
create_from_simple_json(file)

	Creates from a simple json rendering

	
create_from_tuples(tuples, **args)

	Creates from a list of (subj,subj_name,obj) tuples

Assocation Object Model

	
class ontobio.assocmodel.AssociationSet(ontology=None, association_map=None, subject_label_map=None, meta=None)

	An object that represents a collection of associations

NOTE: the intention is that this class can be subclassed to provide
either high-efficiency implementations, or implementations backed by services or external stores.
The default implementation is in-memory.

NOTE: in general you do not need to call this yourself. See assoc_factory

initializes an association set, which minimally consists of:

	an ontology (e.g. GO, HP)

	a map between subjects (e.g genes) and sets/lists of term IDs

	
annotations(subject_id)

	Returns a list of classes used to describe a subject

@Deprecated: use objects_for_subject

	
as_dataframe(fillna=True, subjects=None)

	Return association set as pandas DataFrame

Each row is a subject (e.g. gene)
Each column is the inferred class used to describe the subject

	
associations(subject, object=None)

	Given a subject-object pair (e.g. gene id to ontology class id), return all association
objects that match.

	
enrichment_test(subjects=None, background=None, hypotheses=None, threshold=0.05, labels=False, direction='greater')

	Performs term enrichment analysis.

	Parameters

	
	subjects (string list) – Sample set. Typically a gene ID list. These are assumed to have associations

	background (string list) – Background set. If not set, uses full set of known subject IDs in the association set

	threshold (float) – p values above this are filtered out

	labels (boolean) – if true, labels for enriched classes are included in result objects

	direction ('greater', 'less' or 'two-sided') – default is greater - i.e. enrichment test. Use ‘less’ for depletion test.

	
index()

	Creates indexes based on inferred terms.

You do not need to call this yourself; called on initialization

	
inferred_types(subj)

	Returns: set of reflexive inferred types for a subject.

E.g. if a gene is directly associated with terms A and B, and these terms have ancestors C, D and E
then the set returned will be {A,B,C,D,E}

	Parameters

	- ID string (subj) –

Returns: set of class IDs

	
static intersectionlist_to_matrix(ilist, xterms, yterms)

	WILL BE DEPRECATED

Replace with method to return pandas dataframe

	
jaccard_similarity(s1, s2)

	Calculate jaccard index of inferred associations of two subjects

|ancs(s1) /\ ancs(s2)|
—
|ancs(s1) \/ ancs(s2)|

	
label(id)

	return label for a subject id

Will make use of both the ontology and the association set

	
objects_for_subject(subject_id)

	Returns a list of classes used to describe a subject

	
query(terms=None, negated_terms=None)

	Basic boolean query, using inference.

	Parameters

	
	terms (-) – list

list of class ids. Returns the set of subjects that have at least one inferred annotation to each of the specified classes.

	negated_terms (-) – list

list of class ids. Filters the set of subjects so that there are no inferred annotations to any of the specified classes

	
query_associations(subjects=None, infer_subjects=True, include_xrefs=True)

	Query for a set of associations.

Note: only a minimal association model is stored, so all results are returned as (subject_id,class_id) tuples

	Parameters

	
	subjects – list

list of subjects (e.g. genes, diseases) used to query associations. Any association to one of these subjects or
a descendant of these subjects (assuming infer_subjects=True) are returned.

	infer_subjects – boolean (default true)

See above

	include_xrefs – boolean (default true)

If true, then expand inferred subject set to include all xrefs of those subjects.

Example: if a high level disease node (e.g. DOID:14330 Parkinson disease) is specified, then the default behavior
(infer_subjects=True, include_xrefs=True) and the ontology includes DO, results will include associations from
both descendant DOID classes, and all xrefs (e.g. OMIM)

	
query_intersections(x_terms=None, y_terms=None, symmetric=False)

	Query for intersections of terms in two lists

	Return a list of intersection result objects with keys:

	
	x : term from x

	y : term from y

	c : count of intersection

	j : jaccard score

	
similarity_matrix(x_subjects=None, y_subjects=None, symmetric=False)

	Query for similarity matrix between groups of subjects

	Return a list of intersection result objects with keys:

	
	x : term from x

	y : term from y

	c : count of intersection

	j : jaccard score

	
subontology(minimal=False)

	Generates a sub-ontology based on associations

	
termset_ancestors(terms)

	reflexive ancestors

	Parameters

	- a set or list of class IDs (terms) –

Returns: set of class IDs

TODO - detailed association modeling

Association File Parsers

	
class ontobio.io.gafparser.GafParser(config=None, group='unknown', dataset='unknown', bio_entities=None)

	Parser for GO GAF format

config : a AssocParserConfig object

	
association_generator(file, skipheader=False, outfile=None) → Dict[KT, VT]

	Returns a generator that yields successive associations from file

	Yields

	association

	
map_to_subset(file, outfile=None, ontology=None, subset=None, class_map=None, relations=None)

	Map a file to a subset, writing out results

You can pass either a subset name (e.g. goslim_generic) or a dictionary with ready-made mappings

	Parameters

	
	file (file) – Name or file object for input assoc file

	outfile (file) – Name or file object for output (mapped) assoc file; writes to stdout if not set

	subset (str) – Optional name of subset to map to, e.g. goslim_generic

	class_map (dict) – Mapping between asserted class ids and ids to map to. Many to many

	ontology (Ontology) – Ontology to extract subset from

	
parse(file, skipheader=False, outfile=None)

	Parse a line-oriented association file into a list of association dict objects

Note the returned list is of dict objects. TODO: These will
later be specified using marshmallow and it should be possible
to generate objects

	Parameters

	
	file (file or string) – The file is parsed into association objects. Can be a http URL, filename or file-like-object, for input assoc file

	outfile (file) – Optional output file in which processed lines are written. This a file or file-like-object

	Returns

	Associations generated from the file

	Return type

	list

	
parse_line(line)

	Parses a single line of a GAF

Return a tuple (processed_line, associations). Typically
there will be a single association, but in some cases there
may be none (invalid line) or multiple (disjunctive clause in
annotation extensions)

Note: most applications will only need to call this directly if they require fine-grained control of parsing. For most purposes,
:method:`parse_file` can be used over the whole file

	Parameters

	line (str) – A single tab-seperated line from a GAF file

	
skim(file)

	Lightweight parse of a file into tuples.

Note this discards metadata such as evidence.

Return a list of tuples (subject_id, subject_label, object_id)

	
upgrade_empty_qualifier(assoc: ontobio.model.association.GoAssociation) → ontobio.model.association.GoAssociation

	From https://github.com/geneontology/go-site/issues/1558

For GAF 2.1 we will apply an algorithm to find a best fit relation if the qualifier column is empty.
If the qualifiers field is empty, then:

If the GO Term is exactly GO:008150 Biological Process, then the qualifier should be involved_in
If the GO Term is exactly GO:0008372 Cellular Component, then the qualifer should be is_active_in
If the GO Term is a Molecular Function, then the new qualifier should be enables
If the GO Term is a Biological Process, then the new qualifier should be acts_upstream_or_within
Otherwise for Cellular Component, if it’s subclass of anatomical structure, than use `located_in

and if it’s a protein-containing complexes, use part_of

	Parameters

	assoc – GoAssociation

	Returns

	the possibly upgraded GoAssociation

Go Rules

	
class ontobio.io.qc.FailMode

	An enumeration.

	
class ontobio.io.qc.GoRules

	An enumeration.

	
class ontobio.io.qc.GoRulesResults(all_results, annotation)

	Create new instance of GoRulesResults(all_results, annotation)

	
all_results

	Alias for field number 0

	
annotation

	Alias for field number 1

	
class ontobio.io.qc.RepairState

	An enumeration.

	
ontobio.io.qc.ResultType

	alias of ontobio.io.qc.Result

	
class ontobio.io.qc.TestResult(result_type: ontobio.io.qc.Result, message: str, result)

	Represents the result of a single association.GoAssociation being validated on some rule

Create a new TestResult

	Parameters

	
	result_type (ResultType) – enum of PASS, WARNING, ERROR. Both WARNINGs and ERRORs are reported, but ERROR will filter the offending GoAssociation

	message (str) – Description of the failure of GoAssociation to pass a rule. This is usually just the rule title

	result – [description] True if the GoAssociation passes, False if not. If it’s repaired, this is the updated, repaired, GoAssociation

	
ontobio.io.qc.repair_result(repair_state: ontobio.io.qc.RepairState, fail_mode: ontobio.io.qc.FailMode) → ontobio.io.qc.Result

	Returns ResultType.PASS if the repair_state is OKAY, and WARNING if REPAIRED.

This is used by RepairRule implementations.

	Parameters

	
	repair_state (RepairState) – If the GoAssocition was repaired during a rule, then this should be RepairState.REPAIRED, otherwise RepairState.OKAY

	fail_mode (FailMode) – [description]

	Returns

	[description]

	Return type

	ResultType

	
ontobio.io.qc.result(passes: bool, fail_mode: ontobio.io.qc.FailMode) → ontobio.io.qc.Result

	Send True for passes, and this returns the PASS ResultType, and if False, then
depending on the fail mode it returns either WARNING or ERROR ResultType.

GoAssociation internal Model

This contains the data model for parsing annotations from GAF and GPAD.

The idea is to make it easy to parse text lines of any source into a GoAssociation object
and then give the GoAssociation object the ability to convert itself into GPAD or GAF
of any version. Or any other format that is required.

	
class ontobio.model.association.ConjunctiveSet(elements: List[T])

	This respresents a comma separated list of objects which can be turned into strings.

This is used for the with/from and extensions fields in the GoAssociation.

The field elements can be a list of Curie or ExtensionUnit. Curie for with/from, and
ExtensionUnit for extensions field.

	
display(conjunct_to_str=<function ConjunctiveSet.<lambda>>) → str

	Convert this ConjunctiveSet to a string separateted by commas.

This calls conjunct_to_str (which defaults to str) on each element before joining. To use a different
string representation of each element, pass in a different function. This functionality is used to differentiate
between GPAD 1.2 and GPAD 2.0, where relations are written differently per version.

	
classmethod list_to_str(conjunctions: List[T], conjunct_to_str=<function ConjunctiveSet.<lambda>>) → str

	List should be a list of ConjunctiveSet
Given [ConjunctiveSet, ConjunctiveSet], this will call ConjunctiveSet.display() using the conjunct_to_str function
(which defaults to str) and join them with a pipe.

To have elements of the ConjunctiveSet displayed differently, use a different conjunct_to_str function.
This functionality is used to differentiate between GPAD 1.2 and GPAD 2.0, where relations are written
differently per version.

	
classmethod str_to_conjunctions(entity: str, conjunct_element_builder: Union[C, ontobio.model.association.Error] = <function ConjunctiveSet.<lambda>>) → Union[List[C], ontobio.model.association.Error]

	Takes a field that conforms to the pipe (|) and comma (,) separator type. The parsed version is a list of pipe separated values
which are themselves a comma separated list.

If the elements inside the comma separated list should not just be strings, but be converted into a value of a type, conjunct_element_builder can be provided which should take a string and return a parsed value or an instance of an Error type (defined above).

If there is an error in producing the values of the conjunctions, then this function will return early with the error.

This function will return a List of ConjunctiveSet

	
class ontobio.model.association.Curie(namespace: str, identity: str)

	Object representing a Compact URI, with a namespace identifier along with an ID, like GO:1234567.

Use from_str to parse a string like “GO:1234567” into a Curie. The result should be checked for errors
with is_error

	
class ontobio.model.association.Date(year, month, day, time)

	Create new instance of Date(year, month, day, time)

	
day

	Alias for field number 2

	
month

	Alias for field number 1

	
time

	Alias for field number 3

	
year

	Alias for field number 0

	
class ontobio.model.association.Error(info: str, entity: str = '')

	

	
class ontobio.model.association.Evidence(type: ontobio.model.association.Curie, has_supporting_reference: List[ontobio.model.association.Curie], with_support_from: List[ontobio.model.association.ConjunctiveSet])

	

	
class ontobio.model.association.ExtensionUnit(relation: ontobio.model.association.Curie, term: ontobio.model.association.Curie)

	An ExtensionUnit is a single element of the extensions field of GAF or GPAD. This consists of a relation and a term.

Create an ExtensionUnit with from_str or from_curie_str. If there is an error in parsing then Error is returned.
Results from these functions should be checked for Error.

The string representation will depend on the format, and so the display method should be used. By default this
will write the relation using the label with undercores (example: part_of) as defined in ontobio.rdfgen.relations.py.
To write the relation as a CURIE (as in gpad 2.0), set parameter use_rel_label to True.

	
display(use_rel_label=False)

	Turns the ExtensionUnit into a string. By default this uses the ontobio.rdfgen.relations module to lookup the
relation label. To use the CURIE instead, pass use_rel_label=True.

	
classmethod from_curie_str(entity: str) → Union

	Attempts to parse string entity as an ExtensionUnit
If the relation(term) is not formatted correctly, an Error is returned.
relation is a Curie, and so is any errors in formatting are delegated to Curie.from_str()

	
classmethod from_str(entity: str) → Union

	Attempts to parse string entity as an ExtensionUnit
If the relation(term) is not formatted correctly, an Error is returned.
If the relation cannot be found in the relations dictionary then an error
is also returned.

	
class ontobio.model.association.GoAssociation(source_line: Optional[str], subject: ontobio.model.association.Subject, relation: ontobio.model.association.Curie, object: ontobio.model.association.Term, negated: bool, qualifiers: List[ontobio.model.association.Curie], aspect: Optional[NewType.<locals>.new_type], interacting_taxon: Optional[ontobio.model.association.Curie], evidence: ontobio.model.association.Evidence, subject_extensions: List[ontobio.model.association.ExtensionUnit], object_extensions: List[ontobio.model.association.ConjunctiveSet], provided_by: NewType.<locals>.new_type, date: ontobio.model.association.Date, properties: List[Tuple[str, str]])

	The internal model used by the parsers and qc Rules engine that all annotations are parsed into.

If an annotation textual line cannot be parsed into a GoAssociation then it is not a well formed line.

This class provides several methods to convert this GoAssociation into other representations, like GAF and GPAD
of each version, as well as the old style dictionary Association that this class replaced (for compatibility if needed).

Each parser has its own function or functions that converts an annotation line into a GoAssociation, and this is the first
phase of parsing. In general, GoAssociations are only created by the parsers.

	
to_gaf_2_1_tsv() → List[T]

	Converts the GoAssociation into a “TSV” columnar GAF 2.1 row as a list of strings.

	
to_gaf_2_2_tsv() → List[T]

	Converts the GoAssociation into a “TSV” columnar GAF 2.2 row as a list of strings.

	
to_gpad_1_2_tsv() → List[T]

	Converts the GoAssociation into a “TSV” columnar GPAD 1.2 row as a list of strings.

	
to_gpad_2_0_tsv() → List[T]

	Converts the GoAssociation into a “TSV” columnar GAF 2.0 row as a list of strings.

	
to_hash_assoc() → dict

	Converts the GoAssociation into the old style dictionary association for backwards compatibility

	
class ontobio.model.association.Header(souce_line: Union[str, NoneType])

	

	
class ontobio.model.association.Subject(id: ontobio.model.association.Curie, label: str, fullname: List[str], synonyms: List[str], type: Union[List[str], List[ontobio.model.association.Curie]], taxon: ontobio.model.association.Curie, encoded_by: List[ontobio.model.association.Curie] = None, parents: List[ontobio.model.association.Curie] = None, contained_complex_members: List[ontobio.model.association.Curie] = None, db_xrefs: List[ontobio.model.association.Curie] = None, properties: Dict = None)

	
	
contained_complex_members = None

	Optional, or cardinality 0+

	
db_xrefs = None

	Optional, or cardinality 0+

	
encoded_by = None

	Optional, or cardinality 0+

	
fullname = None

	fullname is also DB_Object_Name in the GPI spec, cardinality 0+

	
fullname_field(max=None) → str

	Converts the fullname or DB_Object_Name into the field text string used in files

	
label = None

	label is also DB_Object_Symbol in the GPI spec

	
parents = None

	Optional, or cardinality 0+

	
properties = None

	Optional, or cardinality 0+

	
synonyms = None

	Cardinality 0+

	
taxon = None

	…

	Type

	Should be NCBITaxon

	
type = None

	In GPI 1.2, this was a string, corresponding to labels of the Sequence Ontology
gene, protein_complex; protein; transcript; ncRNA; rRNA; tRNA; snRNA; snoRNA,
any subclass of ncRNA.
If the specific type is unknown, use gene_product.

When reading gpi 1.2, these labels should be mapped to the 2.0 spec, stating that
the type must be a Curie in the Sequence Ontology OR Protein Ontology OR Gene Ontology

In GPI 1.2, there is only 1 value, and is required.
In GPI 2.0 there is a minimum of 1, but maybe more.

If writing out to GPI 1.2/GAF just take the first value in the list.

	
class ontobio.model.association.Term(id: ontobio.model.association.Curie, taxon: ontobio.model.association.Curie)

	Represents a Gene Ontology term

	
ontobio.model.association.TwoTupleStr(items: List[str]) → tuple

	Create a tuple of of str that is guaranteed to be of length two from a list

If the list is larger, then only the first two elements will be used.
If the list is smaller, then the empty string will be used

	
ontobio.model.association.gp_type_label_to_curie(type: ontobio.model.association.Curie) → str

	This is the reverse of map_gp_type_label_to_curie

	
ontobio.model.association.map_gp_type_label_to_curie(type_label: str) → ontobio.model.association.Curie

	Map entity types in GAF or GPI 1.2 into CURIEs in Sequence Ontology (SO),
Protein Ontology (PRO), or Gene Ontology (GO).

This is a measure to upgrade the pseudo-labels into proper Curies. Present here are
the existing set of labels in current use, and how they should be mapped into CURIEs.

GOlr Queries

	
class ontobio.golr.golr_query.GolrAssociationQuery(subject_category=None, object_category=None, relation=None, relationship_type=None, subject_or_object_ids=None, subject_or_object_category=None, subject=None, subjects=None, object=None, objects=None, subject_direct=False, object_direct=False, subject_taxon=None, subject_taxon_direct=False, object_taxon=None, object_taxon_direct=False, invert_subject_object=None, evidence=None, exclude_automatic_assertions=False, q=None, id=None, use_compact_associations=False, include_raw=False, field_mapping=None, solr=None, config=None, url=None, select_fields=None, fetch_objects=False, fetch_subjects=False, fq=None, slim=None, json_facet=None, iterate=False, map_identifiers=None, facet_fields=None, facet_field_limits=None, facet_limit=25, facet_mincount=1, facet_pivot_fields=None, stats=False, stats_field=None, facet=True, pivot_subject_object=False, unselect_evidence=False, rows=10, start=None, homology_type=None, non_null_fields=None, user_agent=None, association_type=None, sort=None, **kwargs)

	
A Query object providing a higher level of abstraction over either GO or Monarch Solr indexes

All of these can be set when creating a new object

fetch_objects : bool

we frequently want a list of distinct association objects (in
the RDF sense). for example, when querying for all phenotype
associations for a gene, it is convenient to get a list of
distinct phenotype terms. Although this can be obtained by
iterating over the list of associations, it can be expensive
to obtain all associations.

Results are in the ‘objects’ field

fetch_subjects : bool

This is the analog of the fetch_objects field. Note that due
to an inherent asymmetry by which the list of subjects can be
very large (e.g. all genes in all species for “metabolic
process” or “metabolic phenotype”) it’s necessary to combine
this with subject_category and subject_taxon filters

Results are in the ‘subjects’ field

slim : List

a list of either class ids (or in future subset ids), used to
map up (slim) objects in associations. This will populate
an additional ‘slim’ field in each association object corresponding
to the slimmed-up value(s) from the direct objects.
If fetch_objects is passed, this will be populated with slimmed IDs.

evidence: String

Evidence class from ECO. Inference is used.

exclude_automatic_assertions : bool

If true, then any annotations with ECO evidence code for IEA or
subclasses will be excluded.

use_compact_associations : bool

If true, then the associations list will be false, instead
compact_associations contains a more compact representation
consisting of objects with (subject, relation and objects)

config : Config

See Config for details. The config object can be used
to set values for the solr instance to be queried

TODO - Extract params into their own object

Fetch a set of association objects based on a query.

	
exec(**kwargs)

	Execute solr query

Result object is a dict with the following keys:

	raw

	associations : list

	compact_associations : list

	facet_counts

	facet_pivot

	
infer_category(id)

	heuristic to infer a category from an id, e.g. DOID:nnn –> disease

	
make_canonical_identifier(id)

	E.g. MGI:MGI:nnnn –> MGI:nnnn

	
make_gostyle_identifier(id)

	E.g. MGI:nnnn –> MGI:MGI:nnnn

	
map_id(id, prefix, closure_list)

	Map identifiers based on an equivalence closure list.

	
solr_params()

	Generate HTTP parameters for passing to Solr.

In general you should not need to call this directly, calling exec() on a query object
will transparently perform this step for you.

	
translate_doc(d, field_mapping=None, map_identifiers=None, **kwargs)

	Translate a solr document (i.e. a single result row)

	
translate_docs(ds, **kwargs)

	Translate a set of solr results

	
translate_docs_compact(ds, field_mapping=None, slim=None, map_identifiers=None, invert_subject_object=False, **kwargs)

	Translate golr association documents to a compact representation

	
translate_obj(d, fname)

	Translate a field value from a solr document.

This includes special logic for when the field value
denotes an object, here we nest it

	
translate_objs(d, fname, default=None)

	Translate a field whose value is expected to be a list

	
class ontobio.golr.golr_query.GolrSearchQuery(term=None, category=None, is_go=False, url=None, solr=None, config=None, fq=None, fq_string=None, hl=True, facet_fields=None, facet=True, search_fields=None, taxon_map=True, rows=100, start=None, prefix=None, boost_fx=None, boost_q=None, highlight_class=None, taxon=None, min_match=None, minimal_tokenizer=False, include_eqs=False, exclude_groups=False, user_agent=None)

	Controller for monarch and go solr search cores
Queries over a search document

	
autocomplete()

	Execute solr autocomplete

	
search()

	Execute solr search query

Lexmap

	
class ontobio.lexmap.LexicalMapEngine(wsmap={'': '', 'a': '', 'i': '1', 'ii': '2', 'iii': '3', 'iv': '4', 'ix': '9', 'of': '', 'the': '', 'v': '5', 'vi': '6', 'vii': '7', 'viii': '8', 'x': '10', 'xi': '11', 'xii': '12', 'xiii': '13', 'xiv': '14', 'xix': '19', 'xv': '15', 'xvi': '16', 'xvii': '17', 'xviii': '18', 'xx': '20'}, config=None)

	generates lexical matches between pairs of ontology classes

	Parameters

	
	wdmap (dict) – maps words to normalized synonyms.

	config (dict) – A configuration conforming to LexicalMapConfigSchema

	
assign_best_matches(xg)

	For each node in the xref graph, tag best match edges

	
cliques(xg)

	Return all equivalence set cliques, assuming each edge in the xref graph is treated as equivalent,
and all edges in ontology are subClassOf

	Parameters

	xg (Graph) – an xref graph

	Returns

	

	Return type

	list of sets

	
compare_to_xrefs(xg1, xg2)

	Compares a base xref graph with another one

	
get_xref_graph()

	Generate mappings based on lexical properties and return as nx graph.

	A dictionary is stored between ref:Synonym values and synonyms. See ref:index_synonym.
Note that Synonyms include the primary label

	Each key in the dictionary is examined to determine if there exist two Synonyms from
different ontology classes

This avoids N^2 pairwise comparisons: instead the time taken is linear

After initial mapping is made, additional scoring is performed on each mapping

The return object is a nx graph, connecting pairs of ontology classes.

Edges are annotated with metadata about how the match was found:

	syns: pair

	pair of Synonym objects, corresponding to the synonyms for the two nodes

	score: int

	score indicating strength of mapping, between 0 and 100

	Returns

	nx graph (bidirectional)

	Return type

	Graph

	
grouped_mappings(id)

	return all mappings for a node, grouped by ID prefix

	
index_ontology(ont)

	Adds an ontology to the index

This iterates through all labels and synonyms in the ontology, creating an index

	
index_synonym(syn, ont)

	Index a synonym

Typically not called from outside this object; called by index_ontology

	
score_xrefs_by_semsim(xg, ont=None)

	Given an xref graph (see ref:get_xref_graph), this will adjust scores based on
the semantic similarity of matches.

	
weighted_axioms(x, y, xg)

	return a tuple (sub,sup,equiv,other) indicating estimated prior probabilities for an interpretation of a mapping
between x and y.

See kboom paper

CHANGES

0.2.19

	gaf parsing: reject expressions in extensions field that have bad IDs, fixes #99

	lexical mapping: improved handling of xrefs

0.2.18

	lexmap output now excludes index column

	allow custom synsets for lexmap

	fixed bug whereby bulk golr fetch not iterated

0.2.17

	Fixed bug where CHEBI xref labels were treated as class labels

	Various lexical mapping improvements #97 #95

0.2.16

	Added ability to parse skos

	Added more detailed scoring and documentation for lexical mapping.

	lexmap fixes: Fixed #93, #94

0.2.15

	lexical mappings #88 #89

	set ontology id when retrieving from JSON or SPARQL

0.2.11

	#63, added rdf generation

	#62, python version check, @diekhans

	using rst for README

	#56 , assocmodel now allows retrieval of full association objects

	Added GPI writer

0.2.10

	Fixed bug with handling of replaced_by fields in obsolete nodes, #51

0.2.9

	Turned down logging from info to warn for skipped lines

0.2.7

	gaf parsing is more robust to gaf errors

	bugfix function call parameter ordering

0.2.6

	Implementing paging start parameters. For https://github.com/biolink/biolink-api/issues/60

0.2.5

	bugfix for processing gaf lines that do not have the right number of columns

0.2.4

	added ecomap.py

	fixes for planteome

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 ontobio	

 	
 	
 ontobio.io.qc	

 	
 	
 ontobio.model.association	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W
 | X
 | Y

A

 	
 	add_node() (ontobio.ontol.Ontology method)

 	add_parent() (ontobio.ontol.Ontology method)

 	add_synonym() (ontobio.ontol.Ontology method)

 	add_text_definition() (ontobio.ontol.Ontology method)

 	add_to_subset() (ontobio.ontol.Ontology method)

 	add_xref() (ontobio.ontol.Ontology method)

 	all_obsoletes() (ontobio.ontol.Ontology method)

 	all_results (ontobio.io.qc.GoRulesResults attribute)

 	all_synonyms() (ontobio.ontol.Ontology method)

 	ancestors() (ontobio.ontol.Ontology method)

 	
 	annotation (ontobio.io.qc.GoRulesResults attribute)

 	annotations() (ontobio.assocmodel.AssociationSet method)

 	as_dataframe() (ontobio.assocmodel.AssociationSet method)

 	as_dict() (ontobio.ontol.Synonym method)

 	assign_best_matches() (ontobio.lexmap.LexicalMapEngine method)

 	association_generator() (ontobio.io.gafparser.GafParser method)

 	associations() (ontobio.assocmodel.AssociationSet method)

 	AssociationSet (class in ontobio.assocmodel)

 	AssociationSetFactory (class in ontobio.assoc_factory)

 	autocomplete() (ontobio.golr.golr_query.GolrSearchQuery method)

C

 	
 	child_parent_relations() (ontobio.ontol.Ontology method)

 	children() (ontobio.ontol.Ontology method)

 	cliques() (ontobio.lexmap.LexicalMapEngine method)

 	compare_to_xrefs() (ontobio.lexmap.LexicalMapEngine method)

 	ConjunctiveSet (class in ontobio.model.association)

 	contained_complex_members (ontobio.model.association.Subject attribute)

 	create() (ontobio.assoc_factory.AssociationSetFactory method)

 	(ontobio.ontol_factory.OntologyFactory method)

 	
 	create_from_assocs() (ontobio.assoc_factory.AssociationSetFactory method)

 	create_from_file() (ontobio.assoc_factory.AssociationSetFactory method)

 	create_from_gaf() (ontobio.assoc_factory.AssociationSetFactory method)

 	create_from_phenopacket() (ontobio.assoc_factory.AssociationSetFactory method)

 	create_from_remote_file() (ontobio.assoc_factory.AssociationSetFactory method)

 	create_from_simple_json() (ontobio.assoc_factory.AssociationSetFactory method)

 	create_from_tuples() (ontobio.assoc_factory.AssociationSetFactory method)

 	create_slim_mapping() (ontobio.ontol.Ontology method)

 	Curie (class in ontobio.model.association)

D

 	
 	Date (class in ontobio.model.association)

 	day (ontobio.model.association.Date attribute)

 	db_xrefs (ontobio.model.association.Subject attribute)

 	
 	descendants() (ontobio.ontol.Ontology method)

 	display() (ontobio.model.association.ConjunctiveSet method)

 	(ontobio.model.association.ExtensionUnit method)

E

 	
 	encoded_by (ontobio.model.association.Subject attribute)

 	enrichment_test() (ontobio.assocmodel.AssociationSet method)

 	equiv_graph() (ontobio.ontol.Ontology method)

 	Error (class in ontobio.model.association)

 	
 	Evidence (class in ontobio.model.association)

 	exec() (ontobio.golr.golr_query.GolrAssociationQuery method)

 	ExtensionUnit (class in ontobio.model.association)

 	extract_subset() (ontobio.ontol.Ontology method)

F

 	
 	FailMode (class in ontobio.io.qc)

 	filter_redundant() (ontobio.ontol.Ontology method)

 	from_curie_str() (ontobio.model.association.ExtensionUnit class method)

 	
 	from_str() (ontobio.model.association.ExtensionUnit class method)

 	fullname (ontobio.model.association.Subject attribute)

 	fullname_field() (ontobio.model.association.Subject method)

G

 	
 	GafParser (class in ontobio.io.gafparser)

 	get_filtered_graph() (ontobio.ontol.Ontology method)

 	get_graph() (ontobio.ontol.Ontology method)

 	get_level() (ontobio.ontol.Ontology method)

 	get_property_chain_axioms() (ontobio.ontol.Ontology method)

 	get_roots() (ontobio.ontol.Ontology method)

 	get_xref_graph() (ontobio.lexmap.LexicalMapEngine method)

 	
 	GoAssociation (class in ontobio.model.association)

 	GolrAssociationQuery (class in ontobio.golr.golr_query)

 	GolrSearchQuery (class in ontobio.golr.golr_query)

 	GoRules (class in ontobio.io.qc)

 	GoRulesResults (class in ontobio.io.qc)

 	gp_type_label_to_curie() (in module ontobio.model.association)

 	grouped_mappings() (ontobio.lexmap.LexicalMapEngine method)

H

 	
 	has_node() (ontobio.ontol.Ontology method)

 	
 	Header (class in ontobio.model.association)

I

 	
 	index() (ontobio.assocmodel.AssociationSet method)

 	index_ontology() (ontobio.lexmap.LexicalMapEngine method)

 	index_synonym() (ontobio.lexmap.LexicalMapEngine method)

 	infer_category() (ontobio.golr.golr_query.GolrAssociationQuery method)

 	
 	inferred_types() (ontobio.assocmodel.AssociationSet method)

 	inline_xref_graph() (ontobio.ontol.Ontology method)

 	intersectionlist_to_matrix() (ontobio.assocmodel.AssociationSet static method)

 	is_obsolete() (ontobio.ontol.Ontology method)

J

 	
 	jaccard_similarity() (ontobio.assocmodel.AssociationSet method)

L

 	
 	label (ontobio.model.association.Subject attribute)

 	label() (ontobio.assocmodel.AssociationSet method)

 	(ontobio.ontol.Ontology method)

 	
 	LexicalMapEngine (class in ontobio.lexmap)

 	list_to_str() (ontobio.model.association.ConjunctiveSet class method)

 	logical_definitions() (ontobio.ontol.Ontology method)

 	LogicalDefinition (class in ontobio.ontol)

M

 	
 	make_canonical_identifier() (ontobio.golr.golr_query.GolrAssociationQuery method)

 	make_gostyle_identifier() (ontobio.golr.golr_query.GolrAssociationQuery method)

 	map_gp_type_label_to_curie() (in module ontobio.model.association)

 	
 	map_id() (ontobio.golr.golr_query.GolrAssociationQuery method)

 	map_to_subset() (ontobio.io.gafparser.GafParser method)

 	merge() (ontobio.ontol.Ontology method)

 	month (ontobio.model.association.Date attribute)

N

 	
 	node() (ontobio.ontol.Ontology method)

 	
 	node_type() (ontobio.ontol.Ontology method)

 	nodes() (ontobio.ontol.Ontology method)

O

 	
 	objects_for_subject() (ontobio.assocmodel.AssociationSet method)

 	ontobio.io.qc (module)

 	
 	ontobio.model.association (module)

 	Ontology (class in ontobio.ontol)

 	OntologyFactory (class in ontobio.ontol_factory)

P

 	
 	parent_index() (ontobio.ontol.Ontology method)

 	parents (ontobio.model.association.Subject attribute)

 	parents() (ontobio.ontol.Ontology method)

 	parse() (ontobio.io.gafparser.GafParser method)

 	
 	parse_line() (ontobio.io.gafparser.GafParser method)

 	prefix() (ontobio.ontol.Ontology method)

 	prefix_fragment() (ontobio.ontol.Ontology method)

 	prefixes() (ontobio.ontol.Ontology method)

 	properties (ontobio.model.association.Subject attribute)

Q

 	
 	query() (ontobio.assocmodel.AssociationSet method)

 	
 	query_associations() (ontobio.assocmodel.AssociationSet method)

 	query_intersections() (ontobio.assocmodel.AssociationSet method)

R

 	
 	relations_used() (ontobio.ontol.Ontology method)

 	repair_result() (in module ontobio.io.qc)

 	RepairState (class in ontobio.io.qc)

 	
 	replaced_by() (ontobio.ontol.Ontology method)

 	resolve_names() (ontobio.ontol.Ontology method)

 	result() (in module ontobio.io.qc)

 	ResultType (in module ontobio.io.qc)

S

 	
 	score_xrefs_by_semsim() (ontobio.lexmap.LexicalMapEngine method)

 	search() (ontobio.golr.golr_query.GolrSearchQuery method)

 	(ontobio.ontol.Ontology method)

 	similarity_matrix() (ontobio.assocmodel.AssociationSet method)

 	skim() (ontobio.io.gafparser.GafParser method)

 	solr_params() (ontobio.golr.golr_query.GolrAssociationQuery method)

 	sorted_nodes() (ontobio.ontol.Ontology method)

 	str_to_conjunctions() (ontobio.model.association.ConjunctiveSet class method)

 	
 	subgraph() (ontobio.ontol.Ontology method)

 	Subject (class in ontobio.model.association)

 	subontology() (ontobio.assocmodel.AssociationSet method)

 	(ontobio.ontol.Ontology method)

 	subsets() (ontobio.ontol.Ontology method)

 	Synonym (class in ontobio.ontol)

 	synonyms (ontobio.model.association.Subject attribute)

 	synonyms() (ontobio.ontol.Ontology method)

T

 	
 	taxon (ontobio.model.association.Subject attribute)

 	Term (class in ontobio.model.association)

 	termset_ancestors() (ontobio.assocmodel.AssociationSet method)

 	TestResult (class in ontobio.io.qc)

 	text_definition() (ontobio.ontol.Ontology method)

 	time (ontobio.model.association.Date attribute)

 	to_gaf_2_1_tsv() (ontobio.model.association.GoAssociation method)

 	to_gaf_2_2_tsv() (ontobio.model.association.GoAssociation method)

 	to_gpad_1_2_tsv() (ontobio.model.association.GoAssociation method)

 	
 	to_gpad_2_0_tsv() (ontobio.model.association.GoAssociation method)

 	to_hash_assoc() (ontobio.model.association.GoAssociation method)

 	translate_doc() (ontobio.golr.golr_query.GolrAssociationQuery method)

 	translate_docs() (ontobio.golr.golr_query.GolrAssociationQuery method)

 	translate_docs_compact() (ontobio.golr.golr_query.GolrAssociationQuery method)

 	translate_obj() (ontobio.golr.golr_query.GolrAssociationQuery method)

 	translate_objs() (ontobio.golr.golr_query.GolrAssociationQuery method)

 	traverse_nodes() (ontobio.ontol.Ontology method)

 	TwoTupleStr() (in module ontobio.model.association)

 	type (ontobio.model.association.Subject attribute)

U

 	
 	upgrade_empty_qualifier() (ontobio.io.gafparser.GafParser method)

W

 	
 	weighted_axioms() (ontobio.lexmap.LexicalMapEngine method)

X

 	
 	xrefs() (ontobio.ontol.Ontology method)

Y

 	
 	year (ontobio.model.association.Date attribute)

 :: _biolink:

Biolink

Biolink is a REST-ish API for accessing ontologies and ontology-based
associations.

The reference implementation for biolink is implemented with
Flask-restplus and leverages ontobio. Code can be found here:

https://github.com/biolink/biolink-api

Monarch instance: https://api.monarchinitiative.org/api/

 # How to contribute code to OntoBio

These guidelines are for developers of OntoBio, whether internal or in the broader community.

Mailing list

	[biolink-api google group](https://groups.google.com/forum/#!forum/biolink-api)

Code Style

	Use NumPy-style docstrings. See [Napoleon docs]((http://www.sphinx-doc.org/en/stable/ext/napoleon.html)

Basic principles of the Monarch-flavored [GitHub Workflow](http://guides.github.com/overviews/flow/)

Principle 1: Work from a personal fork
* Prior to adopting the workflow, a developer will perform a one-time setup to create a personal Fork of the appropriate shared repo (e.g., monarch-app) and will subsequently perform their development and testing on a task-specific branch within their forked repo. This forked repo will be associated with that developer’s GitHub account, and is distinct from the shared repo managed by the Monarch Initiative.

Principle 2: Commit to personal branches of that fork
* Changes will never be committed directly to the master branch on the shared repo. Rather, they will be composed as branches within the developer’s forked repo, where the developer can iterate and refine their code prior to submitting it for review.

Principle 3: Propose changes via pull request of personal branches
* Each set of changes will be developed as a task-specific branch in the developer’s forked repo, and then a [pull request](github.com/government/best-practices/compare) will be created to develop and propose changes to the shared repo. This mechanism provides a way for developers to discuss, revise and ultimately merge changes from the forked repo into the shared Monarch repo.

Principle 4: Delete or ignore stale branches, but don’t recycle merged ones
* Once a pull request has been merged, the task-specific branch is no longer needed and may be deleted or ignored. It is bad practice to reuse an existing branch once it has been merged. Instead, a subsequent branch and pull-request cycle should begin when a developer switches to a different coding task.
* You may create a pull request in order to get feedback, but if you wish to continue working on the branch, so state with “DO NOT MERGE YET”.

Table of contents

<!– MarkdownTOC –>

	
	[One Time Setup - Forking a Shared Repo](#one-time-setup—forking-a-shared-repo)

	
	[Step 1 - Backup your existing repo (optional)](#step-1—backup-your-existing-repo-optional)

	[Step 2 - Fork monarch-app via the Web](#step-2—fork-monarch-app-via-the-web)

	[Step 3 - Clone the Fork Locally](#step-3—clone-the-fork-locally)

	[Step 4 - Configure the local forked repo](#step-4—configure-the-local-forked-repo)

	[Step 5 - Configure .bashrc to show current branch (optional)](#step-5—configure–bashrc-to-show-current-branch-optional)

	
	[Typical Development Cycle](#typical-development-cycle)

	
	
	[Refresh and clean up local environment](#refresh-and-clean-up-local-environment)

	
	[Step 1 - Fetch remotes](#step-1—fetch-remotes)

	[Step 2 - Ensure that ‘master’ is up to date](#step-2—ensure-that-master-is-up-to-date)

	[Create a new branch](#create-a-new-branch)

	[Changes, Commits and Pushes](#changes-commits-and-pushes)

	
	[Reconcile branch with upstream changes](#reconcile-branch-with-upstream-changes)

	
	[Fetching the upstream branch](#fetching-the-upstream-branch)

	[Rebasing to avoid Conflicts and Merge Commits](#rebasing-to-avoid-conflicts-and-merge-commits)

	[Dealing with merge conflicts during rebase](#dealing-with-merge-conflicts-during-rebase)

	[Advanced: Interactive rebase](#advanced-interactive-rebase)

	[Submitting a PR (pull request)](#submitting-a-pr-pull-request)

	[Reviewing a pull request](#reviewing-a-pull-request)

	[Respond to TravisCI tests](#respond-to-travisci-tests)

	[Respond to peer review](#respond-to-peer-review)

	[Repushing to a PR branch](#repushing-to-a-pr-branch)

	[Merge a pull request](#merge-a-pull-request)

	[Celebrate and get back to work](#celebrate-and-get-back-to-work)

	[GitHub Tricks and Tips](#github-tricks-and-tips)

	[References and Documentation](#references-and-documentation)

<!– /MarkdownTOC –>

One Time Setup - Forking a Shared Repo

The official shared Monarch repositories (e.g., monarch-app, phenogrid) are intended to be modified solely via pull requests that are reviewed and merged by a set of responsible ‘gatekeeper’ developers within the Monarch development team. These pull requests are initially created as task-specific named branches within a developer’s personal forked repo.

Typically, a developer will fork a shared repo once, which creates a personal copy of the repo that is associated with the developer’s GitHub account. Subsequent pull requests are developed as branches within this personal forked repo. The repo need never be forked again, although each pull request will be based upon a new named branch within this forked repo.

Step 1 - Backup your existing repo (optional)

The Monarch team has recently adopted the workflow described in this document. Many developers will have an existing clone of the shared repo that they have been using for development. This cloned local directory must be moved aside so that a proper clone of the forked repo can be used instead.

If you do not have an existing local copy of the shared repo, then skip to [Step 2](#step-2—fork-monarch-app-via-the-web) below.

Because there may be valuable files stored in the developer’s local directory but not stored in GitHub, we recommend that the developer keep this copy around for a few weeks until they are confident any useful information has been migrated. The following instructions should be effective at moving your existing monarch-app directory aside. Adapt these for use with phenogrid and other Monarch repos.

> cd …/monarch-app # Your local copy of the shared repo.
> rm -rf ./node_modules # You won’t need this anymore. Free up disk
> cd ..
> mv monarch-app monarch-app.old # Keep dir around, but avoid accidental use

Step 2 - Fork monarch-app via the Web

The easiest way to fork the monarch-app repository is via the GitHub web interface:

	Ensure you are logged into GitHub as your GitHub user.

	Navigate to the monarch-app shared repo at https://github.com/monarch-initiative/monarch-app.

	Notice the ‘Fork’ button in the upper right corner. It has a number to the right of the button.

- Click the Fork button. The resulting behavior will depend upon whether your GitHub user is a member of a GitHub organization. If not a member of an organization, then the fork operation will be performed and the forked repo will be created in the user’s account.
- If your user is a member of an organization (e.g., monarch-initiative or acme-incorporated), then GitHub will present a dialog for the user to choose where to place the forked repo. The user should click on the icon corresponding to their username.

- If you accidentally click the number, you will be on the Network Graphs page and should go back.

Step 3 - Clone the Fork Locally

At this point, you will have a fork of the shared repo (e.g., monarch-app) stored within GitHub, but it is not yet available on your local development machine. This is done as follows:

Assumes that directory ~/MI/ will contain your Monarch repos.
Assumes that your username is MarieCurie.
Adapt these instructions to suit your environment
> cd ~/MI
> git clone git@github.com:MarieCurie/monarch-app.git
> cd monarch-app

Notice that we are using the SSH transport to clone this repo, rather than the HTTPS transport. The telltale indicator of this is the git@github.com:MarieCurie… rather than the alternative https://github.com/MarieCurie….

Note: If you encounter difficulties with the above `git clone`, you may need to associate your local public SSH key with your GitHub account. See [Which remote URL should I use?](https://help.github.com/articles/which-remote-url-should-i-use/) for information.

Step 4 - Configure the local forked repo

The git clone above copied the forked repo locally, and configured the symbolic name ‘origin’ to point back to the remote GitHub fork. We will need to create an additional remote name to point back to the shared version of the repo (the one that we forked in Step 2). The following should work:

Assumes that you are already in the local monarch-app directory
> git remote add upstream https://github.com/monarch-initiative/monarch-app.git

Verify that remotes are configured correctly by using the command git remote -v. The output should resemble:

upstream https://github.com/monarch-initiative/monarch-app.git (fetch)
upstream https://github.com/monarch-initiative/monarch-app.git (push)
origin git@github.com:MarieCurie/monarch-app.git (fetch)
origin git@github.com:MarieCurie/monarch-app.git (push)

Step 5 - Configure .bashrc to show current branch (optional)

One of the important things when using Git is to know what branch your working directory is tracking. This can be easily done with the git status command, but checking your branch periodically can get tedious. It is easy to configure your bash environment so that your current git branch is always displayed in your bash prompt.

If you want to try this out, add the following to your ~/.bashrc file:

function parse_git_branch()
{

git branch 2> /dev/null | sed -e ‘/^[^*]/d’ -e ‘s/* (.*)/ 1/’

}
LIGHT_GRAYBG=”[033[0;47m]”
LIGHT_PURPLE=”[033[0;35m]”
NO_COLOR=”[033[0m]”
export PS1=”$LIGHT_PURPLEw$LIGHT_GRAYBG$(parse_git_branch)$NO_COLOR $ “

You will need to open up a new Terminal window (or re-login to your existing terminal) to see the effect of the above .bashrc changes.

If you cd to a git working directory, the branch will be displayed in the prompt. For example:

~ $
~ $ # This isn’t a git directory, so no branch is shown
~ $
~ $ cd /tmp
/tmp $
/tmp $ # This isn’t a git directory, so no branch is shown
/tmp $
/tmp $ cd ~/MI/monarch-app/
~/MI/monarch-app fix-feedback-button $
~/MI/monarch-app fix-feedback-button $ # The current branch is shown
~/MI/monarch-app fix-feedback-button $
~/MI/monarch-app fix-feedback-button $ git status
On branch fix-feedback-button
Changes not staged for commit:

(use “git add <file>…” to update what will be committed)
(use “git checkout – <file>…” to discard changes in working directory)

… remaining output of git status elided …

—

Typical Development Cycle

Once you have completed the One-time Setup above, then it will be possible to create new branches and pull requests using the instructions below. The typical development cycle will have the following phases:

	Refresh and clean up local environment

	Create a new task-specific branch

	Perform ordinary development work, periodically committing to the branch

	Prepare and submit a Pull Request (PR) that refers to the branch

	Participate in PR Review, possibly making changes and pushing new commits to the branch

	Celebrate when your PR is finally Merged into the shared repo.

	Move onto the next task and repeat this cycle

Refresh and clean up local environment

Git will not automatically sync your Forked repo with the original shared repo, and will not automatically update your local copy of the Forked repo. These tasks are part of the developer’s normal cycle, and should be the first thing done prior to beginning a new development effort and creating a new branch. In addition, this

Step 1 - Fetch remotes

In the (likely) event that the upstream repo (the monarch-app shared repo) has changed since the developer last began a task, it is important to update the local copy of the upstream repo so that its changes can be incorporated into subsequent development.

> git fetch upstream # Updates the local copy of shared repo BUT does not affect the working directory, it simply makes the upstream code available locally for subsequent Git operations. See step 2.

Step 2 - Ensure that ‘master’ is up to date

Assuming that new development begins with branch ‘master’ (a good practice), then we want to make sure our local ‘master’ has all the recent changes from ‘upstream’. This can be done as follows:

> git checkout master
> git reset –hard upstream/master

The above command is potentially dangerous if you are not paying attention, as it will remove any local commits to master (which you should not have) as well as any changes to local files that are also in the upstream/master version (which you should not have). In other words, the above command ensures a proper clean slate where your local master branch is identical to the upstream master branch.

Some people advocate the use of git merge upstream/master or git rebase upstream/master instead of the git reset –hard. One risk of these options is that unintended local changes accumulate in the branch and end up in an eventual pull request. Basically, it leaves open the possibility that a developer is not really branching from upstream/master, but is branching from some developer-specific branch point.

Create a new branch

Once you have updated the local copy of the master branch of your forked repo, you can create a named branch from this copy and begin to work on your code and pull-request. This is done with:

> git checkout -b fix-feedback-button # This is an example name

This will create a local branch called ‘fix-feedback-button’ and will configure your working directory to track that branch instead of ‘master’.

You may now freely make modifications and improvements and these changes will be accumulated into the new branch when you commit.

If you followed the instructions in [Step 5 - Configure .bashrc to show current branch (optional)](#step-5—configure–bashrc-to-show-current-branch-optional), your shell prompt should look something like this:

~/MI/monarch-app fix-feedback-button $

Changes, Commits and Pushes

Once you are in your working directory on a named branch, you make changes as normal. When you make a commit, you will be committing to the named branch by default, and not to master.

You may wish to periodically git push your code to GitHub. Note the use of an explicit branch name that matches the branch you are on (this may not be necessary; a git expert may know better):

> git push origin fix-feedback-button # This is an example name

Note that we are pushing to ‘origin’, which is our forked repo. We are definitely NOT pushing to the shared ‘upstream’ remote, for which we may not have permission to push.

Reconcile branch with upstream changes

If you have followed the instructions above at [Refresh and clean up local environment](#refresh-and-clean-up-local-environment), then your working directory and task-specific branch will be based on a starting point from the latest-and-greatest version of the shared repo’s master branch. Depending upon how long it takes you to develop your changes, and upon how much other developer activity there is, it is possible that changes to the upstream master will conflict with changes in your branch.

So it is a good practice to periodically pull down these upstream changes and reconcile your task branch with the upstream master branch. At the least, this should be performed prior to submitting a PR.

Fetching the upstream branch

The first step is to fetch the update upstream master branch down to your local development machine. Note that this command will NOT affect your working directory, but will simply make the upstream master branch available in your local Git environment.

> git fetch upstream

Rebasing to avoid Conflicts and Merge Commits

Now that you’ve fetched the upstream changes to your local Git environment, you will use the git rebase command to adjust your branch

> # Make that your changes are committed to your branch
> # before doing any rebase operations
> git status

… Review the git status output to ensure your changes are committed
… Also a good chance to double-check that you are on your
… task branch and not accidentally on master

> git rebase upstream/master

The rebase command will have the effect of adjusting your commit history so that your task branch changes appear to be based upon the most recently fetched master branch, rather than the older version of master you may have used when you began your task branch.

By periodically rebasing in this way, you can ensure that your changes are in sync with the rest of Monarch development and you can avoid hassles with merge conflicts during the PR process.

Dealing with merge conflicts during rebase

Sometimes conflicts happen where another developer has made changes and committed them to the upstream master (ideally via a successful PR) and some of those changes overlap with the code you are working on in your branch. The git rebase command will detect these conflicts and will give you an opportunity to fix them before continuing the rebase operation. The Git instructions during rebase should be sufficient to understand what to do, but a very verbose explanation can be found at [Rebasing Step-by-Step](http://gitforteams.com/resources/rebasing.html)

Advanced: Interactive rebase

As you gain more confidence in Git and this workflow, you may want to create PRs that are easier to review and best reflect the intent of your code changes. One technique that is helpful is to use the interactive rebase capability of Git to help you clean up your branch prior to submitting it as a PR. This is completely optional for novice Git users, but it does produce a nicer shared commit history.

See [squashing commits with rebase](http://gitready.com/advanced/2009/02/10/squashing-commits-with-rebase.html) for a good explanation.

Submitting a PR (pull request)

Once you have developed code and are confident it is ready for review and final integration into the upstream version, you will want to do a final git push origin … (see Changes, Commits and Pushes above). Then you will use the GitHub website to perform the operation of creating a Pull Request based upon the newly pushed branch.

See [submitting a pull request](https://help.github.com/articles/creating-a-pull-request).

Reviewing a pull request

The set of open PRs for the monarch-app can be viewed by first visiting the shared monarch-app GitHub page at https://github.com/monarch-initiative/monarch-app.

Click on the ‘Pull Requests’ link on the right-side of the page:

Note that the Pull Request you created from your forked repo shows up in the shared repo’s Pull Request list. One way to avoid confusion is to think of the shared repo’s PR list as a queue of changes to be applied, pending their review and approval.

Respond to TravisCI tests

The GitHub Pull Request mechanism is designed to allow review and refinement of code prior to its final merge to the shared repo. After creating your Pull Request, the TravisCI tests for monarch-app will be executed automatically, ensuring that the code that ‘worked fine’ on your development machine also works in the production-like environment provided by TravisCI. The current status of the tests can be found near the bottom of the individual PR page, to the right of the Merge Request symbol:

TBD - Something should be written about developers running tests PRIOR to TravisCI and the the PR. This may already be in the README.md, but should be cited.

Respond to peer review

The GitHub Pull Request mechanism is designed to allow review and refinement of code prior to its final merge to the shared repo. After creating your Pull Request, the TravisCI tests for monarch-app will be executed automatically, ensuring that the code that ‘worked fine’ on your development machine also works in the production-like environment provided by TravisCI. The current status of the tests can be found

Repushing to a PR branch

It’s likely that after created a Pull Request, you will receive useful peer review or your TravisCI tests will have failed. In either case, you will make the required changes on your development machine, retest your changes, and you can then push your new changes back to your task branch and the PR will be automatically updated. This allows a PR to evolve in response to feedback from peers. Once everyone is satisfied, the PR may be merged. (see below).

Merge a pull request

One of the goals behind the workflow described here is to enable a large group of developers to meaningfully contribute to the Monarch codebase. The Pull Request mechanism encourages review and refinement of the proposed code changes. As a matter of informal policy, Monarch expects that a PR will not be merged by its author and that a PR will not be merged without at least one reviewer approving it (via a comment such as +1 in the PR’s Comment section).

Celebrate and get back to work

You have successfully gotten your code improvements into the shared repository. Congratulations! The branch you created for this PR is no longer useful, and may be deleted from your forked repo or may be kept. But in no case should the branch be further developed or reused once it has been successfully merge. Subsequent development should be on a new branch. Prepare for your next work by returning to [Refresh and clean up local environment](#refresh-and-clean-up-local-environment).

—

GitHub Tricks and Tips

	Add ?w=1 to a GitHub file compare URL to ignore whitespace differences.

References and Documentation

	The instructions presented here are derived from several sources. However, a very readable and complete article is [Using the Fork-and-Branch Git Workflow](http://blog.scottlowe.org/2015/01/27/using-fork-branch-git-workflow/). Note that the article doesn’t make clear that certain steps like Forking are one-time setup steps, after which Branch-PullRequest-Merge steps are used; the instructions below will attempt to clarify this.

	New to GitHub? The [GitHub Guides](http://guides.github.com) are a great place to start.

	Advanced GitHub users might want to check out the [GitHub Cheat Sheet](https://github.com/tiimgreen/github-cheat-sheet/blob/master/README.md)

	

Notes

The process described below is initially intended to be used in the monarch-app repository, although it may later be adopted by the other Monarch-related source code repositories, such as phenogrid.

Search

Lexical search over ontologies

 _static/plus.png

_static/up-pressed.png

_static/up.png

_images/nucleus.png
cellular_component

/ wlmsof

subClassOf | cell
F0:0000050
KubClassOf
subClassOf
intracellular
T
F0:0000050
organelle intracellular 'BF0:0000050
part
bubClassOf “_subClassOf subClassOf
‘membrane-bounded ftracellular
organelle organelle

subClassOf /subClassOf

organelle

intracellular
membrane-bounded

subClassOf

nucleus

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to ontobio’s documentation!

 		
 Installation

 		
 Development Version

 		
 With pyvenv

 		
 Quick start

 		
 Command Line

 		
 Notebooks

 		
 Python

 		
 Web Services

 		
 Command Line

 		
 Live Demo

 		
 Ontologies

 		
 Connecting to ontologies

 		
 Basic queries

 		
 Ancestors queries

 		
 Visualization using obographviz

 		
 Search

 		
 Properties

 		
 SPARQL integration

 		
 Associations

 		
 Examples

 		
 Parsing assoc files

 		
 Top Level Options

 		
 GO Rules

 		
 GOlr Queries

 		
 Notebooks

 		
 Jupyter Notebook Examples

 		
 Running Jupyter Locally

 		
 Basic Concepts

 		
 Ontologies

 		
 Alternatives

 		
 Associations

 		
 Categories

 		
 Lightweight vs Complete

 		
 Example Asssociation Set

 		
 Assocations vs ontology edges

 		
 See also

 		
 Identifiers

 		
 Inputs

 		
 Local JSON ontology files

 		
 Local OWL and OBO-Format files

 		
 Local SKOS RDF Files

 		
 Remote SPARQL ontology access

 		
 Remote SciGraph ontology access

 		
 Local GAF or GPAD association files

 		
 Remote association access via GOlr

 		
 Remote association access via wikidata

 		
 Use of caching

 		
 To be implemented

 		
 Outputs and Visualization

 		
 Graphviz Output

 		
 Matplotlib Output

 		
 plotly

 		
 JSON output

 		
 OBO-Format output

 		
 Identifiers

 		
 URIs, prefixes and CURIEs

 		
 Mapping

 		
 Ontology-Based Analyses

 		
 Enrichment

 		
 Reproducibility

 		
 Command line wrapper

 		
 Further reading

 		
 Identifier Mapping

 		
 Semantic Similarity

 		
 Slimming

 		
 Graph Reduction

 		
 Lexical Analyses

 		
 Advanced Ontology Use

 		
 GO Rules Engine

 		
 Rules Definition

 		
 How to Write a New Rule Implementation

 		
 Implmentation Notes

 		
 API

 		
 Ontology Access

 		
 Factory

 		
 Ontology Object Model

 		
 Assocation Access

 		
 Factory

 		
 Assocation Object Model

 		
 Association File Parsers

 		
 Go Rules

 		
 GoAssociation internal Model

 		
 GOlr Queries

 		
 Lexmap

 		
 CHANGES

 		
 0.2.19

 		
 0.2.18

 		
 0.2.17

 		
 0.2.16

 		
 0.2.15

 		
 0.2.11

 		
 0.2.10

 		
 0.2.9

 		
 0.2.7

 		
 0.2.6

 		
 0.2.5

 		
 0.2.4

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

